TET1-Mediated Hydroxymethylation Facilitates Hypoxic Gene Induction in Neuroblastoma

نویسندگان

  • Christopher J. Mariani
  • Aparna Vasanthakumar
  • Jozef Madzo
  • Ali Yesilkanal
  • Tushar Bhagat
  • Yiting Yu
  • Sanchari Bhattacharyya
  • Roland H. Wenger
  • Susan L. Cohn
  • Jayasri Nanduri
  • Amit Verma
  • Nanduri R. Prabhakar
  • Lucy A. Godley
چکیده

The ten-eleven-translocation 5-methylcytosine dioxygenase (TET) family of enzymes catalyzes the conversion of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), a modified cytosine base that facilitates gene expression. Cells respond to hypoxia by inducing a transcriptional program regulated in part by oxygen-dependent dioxygenases that require Fe(II) and α-ketoglutarate. Given that the TET enzymes also require these cofactors, we hypothesized that the TETs regulate the hypoxia-induced transcriptional program. Here, we demonstrate that hypoxia increases global 5-hmC levels, with accumulation of 5-hmC density at canonical hypoxia response genes. A subset of 5-hmC gains colocalize with hypoxia response elements facilitating DNA demethylation and HIF binding. Hypoxia results in transcriptional activation of TET1, and full induction of hypoxia-responsive genes and global 5-hmC increases require TET1. Finally, we show that 5-hmC increases and TET1 upregulation in hypoxia are HIF-1 dependent. These findings establish TET1-mediated 5-hmC changes as an important epigenetic component of the hypoxic response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DAZL regulates Tet1 translation in murine embryonic stem cells.

Embryonic stem cell (ESC) cultures display a heterogeneous gene expression profile, ranging from a pristine naïve pluripotent state to a primed epiblast state. Addition of inhibitors of GSK3β and MEK (so-called 2i conditions) pushes ESC cultures toward a more homogeneous naïve pluripotent state, but the molecular underpinnings of this naïve transition are not completely understood. Here, we dem...

متن کامل

Epigenetic regulation of intestinal stem cells by Tet1-mediated DNA hydroxymethylation.

Methylated cytosines are associated with gene silencing. The ten-eleven translocation (TET) hydroxylases, which oxidize methylated cytosines to 5-hydroxymethylcytosine (5hmC), are essential for cytosine demethylation. Gene silencing and activation are critical for intestinal stem cell (ISC) maintenance and differentiation, but the potential role of TET hydroxylases in these processes has not ye...

متن کامل

Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming.

DNA methylation and demethylation have been proposed to play an important role in somatic cell reprogramming. Here, we demonstrate that the DNA hydroxylase Tet1 facilitates pluripotent stem cell induction by promoting Oct4 demethylation and reactivation. Moreover, Tet1 (T) can replace Oct4 and initiate somatic cell reprogramming in conjunction with Sox2 (S), Klf4 (K), and c-Myc (M). We establis...

متن کامل

Antidepressant-Like Effect of Sodium Butyrate is Associated with an Increase in TET1 and in 5-Hydroxymethylation Levels in the Bdnf Gene

BACKGROUND Epigenetic drugs like sodium butyrate (NaB) show antidepressant-like effects in preclinical studies, but the exact molecular mechanisms of the antidepressant effects remain unknown. While research using NaB has mainly focused on its role as a histone deacetylase inhibitor (HDACi), there is also evidence that NaB affects DNA methylation. METHODS The purpose of this study was to exam...

متن کامل

TET1-mediated different transcriptional regulation in prostate cancer.

The recent studies demonstrated that the global 5-hydroxymethylcytosine (5 hmC) level decreased in prostate cancer (PCa) involved the 5-methylcytosine (5 mC) hydroxymethylase, Ten-eleven translocation (TET)1 reduction. 5 hmC and TET1 were both revealed a dual function in bivalent domain associated with developmental regulators in embryonic stem cell model. However, the mechanism underlying the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014